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Two versions of the approximate relations of the deformation theory of continuous media, known as the complete version (see, 
for example [1]) and the incomplete version (see, for example [2, 3]) of the quadratic approximation of the non-linear theory 
are analysed.It is shown that the relations of the complete version, which define the elongation deformation, and the relations 
of the incomplete version, which define the shear deformation, are incorrect, since, when solving specific problems, they lead to 
the occurrence of false bifurcation points. For small elongation deformation and medium shear deformation a non-contradictory 
version of the kinematic relations is constructed in the quadratic approximation, representing a combination of the relations of 
the complete and incomplete versions. The simplest examples of its application, connected with the reduction of the two- 
dimensional non-linear problem of the deformation of a strip in the form of a rod to homogeneous equations and their subsequent 
use to detect possible forms of loss of stability for characteristic forms of loading them, are considered. Essentially new results 
are obtained connected with the investigation of forms of loss of stability of a rod under uniform transverse compression and 
pure shear. In the first case the behaviour of the load turns out to be important: if it remains normal to the deformation axis of 
the rod, bifurcation is only possible with respect to the shear form, if it retains its direction, and then, in addition to bifurcation 
with respect to the shear form, a bending form of loss of stability is possible, which is identical in form with the Euler form, for 
which there are no shears. In the second case, i.e. when there is a load which causes pure shear of the rod, to investigate its 
bifurcation values, it is necessary to describe the shear deformation by non-linear kinematic relations in the complete quadratic 
version, whereas when there are no subcritical shear stresses one can use the simplified relations. An example of the investigation 
of the forms of loss of stability of a circular ring when acted upon by a uniform external pressure having zero variability in the 
circumferential direction is also considered. �9 2005 Elsevier Ltd. All rights reserved. 

1. R E L A T I O N S  O F  D E F O R M A T I O N  T H E O R Y  IN T H E  Q U A D R A T I C  
A P P R O X I M A T I O N  

If the space of a body in the initial (undeformed) state is referred to rectangular Cartesian coordinates 
x, y, z, and we denote the components of  the displacements by u, ~0, w, then for arbitrary displacements 
for elongation deformation Ex, Ey, Ez and shear deformation sinT~y, sinT~, sinTy~ we have the formulae 

E x = (1 +2e~x) t12- 1 . . . .  ; sinTxy = (1 +2e~)-]t2(1 +2gyy)-1/2Exy,  . . .  (1.1) 

by which, using the six components of the deformation 

1 2 2+W2x ) . . . . .  = I d y . t - 1 ) x - b 1 4 x 1 4 y 4 - 1 ) , . t l ) y - I - W x W , y  , (1.2) I~xx = U x + ~ ( u z + l g x  " g x y  , , , . . .  

tPr ik l .  Ma t .  M e k h .  Vol. 69, No. 5, pp. 861--881, 2005. 
0021-8928/S--see front matter. �9 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.09.013 
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the arbitrary deformed state of the body is described. An extremely clear derivation of formulae (1.1) 
and (1.2) and a comprehensive analysis of them has been given by Novozhilov [1]; these formulae can 
be seen at the present time in practically any scientific and educational literature on the non-linear theory 
of elasticity. 

If the elongation deformation is small, i.e. E,  = e a 1, from the first group of relations of (1.1) we 
obtain the following relations of undoubted rigor when the degree of accuracy 2 + Ex = 2 is satisfied 

1 2 2 + w2) ,  
Ex=Exx  = u x + ~ ( u , , + V x  . . .  (1.3) 

and, when an accuracy of (1 + 2 E x )  -1/2 = 1 from the second group of relations of (1.1) we obtain 

sinTxy - exy = U,y + tl x + u xuy  + 1) xl),y + W x W , y ~  . . .  (1.4) 

or for small shear angles 7xy, 7x~, 7yz 

"~xy ~ ~xy at U,y at "l),x at U,xU,y at 1) x l )  y at W xWy~ . �9 (1.5) 

These relations were derived in [1] together with formulae (1.3) and are widely used as kinematic 
relations in the quadratic approximation. 

Donnell [2] also derived another incomplete quadratic version of the kinematic relations, when 
Ex, . . . ,  sinTxy, ... are calculated, apart from squares and pair wise products of the derivatives of the 
displacements, from the formulae 

1 2 W 2 . ,  
E x = u x + ~ ( V a +  ,x) . "  (1.6) 

sinTxy = U.y + l),x - u,xl) x - U.y'l).y + W , x W , y  , . . .  (1.7) 

Shklyarchuk [3] also considered a simpler version of relations (1.7) 

"~xy = U,y at 'O x at W,xW y , . . .  (1.8) 

The need to estimate the quality of the above three versions of the kinematic relations in the quadratic 
approximation arose in connection with the appearance of false bifurcation points when solving specific 
problems, which were formulated in [4, 5], starting from relations of the form (1.3). One of these 
estimates can be obtained by considering uniaxial extension-compression and pure shear. A brief analysis 
of this kind was given earlier in [6]. 

2. U N I A X I A L  E X T E N S I O N - C O M P R E S S I O N  

It was shown in [4] that for uniaxial extension-compression of a rod with a force P, applied at its ends, 
formulae (1.6) are preferable to formulae (1.3); moreover, in this case formulae (1.6)can be used for 
any elastic deformations. This can be shown as follows. 

The variation of the work done by the forces applied to an elementary parallelepiped, when had 
dimensions dx, dy and dz before deformation and was deformed by a load along the x axis, according 
to Novozhilov will be equal to 

S *  x 13 xx 
gdA  = O*x~Exxdxdydz;  ax* = 

S~(1 + 2 G x  )ua  (2.1) 
2 1/2 

Sx* = [(1 +2eyy)(1 +2ezz)-eyz] d y d z ,  S x = d y d z  

Then 

8dA  = ( ~ x x S * ) 8 [ ( l  +2Cxx) 1/2- 1]dx = d P x S ( E x d X  ) (2.2) 

Here dPx is the normal force applied to the face dydz  of the element. 
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The last expression could have been written immediately as the principle for possible displacements 
for a deformed element of length (1 + Ex)dx = dx + u'dx (u' = du/dx); then 

ex  = u' (2.3) 

Expression (1.6) just leads to formula (2.3), which in the case considered, in view of the equalities 
"o: = w: ~ 0, also follows when the first expression of (1.2) is substituted into the first equality of (1.1). 

As the same time, approximation (1.3) gives 

Ex -~ e~x = u' + u'212 (2.4) 

which in the problem of the compression of a rod by a force P leads to the false bifurcation value 
P = E F  (E is the modulus of elasticity for stretching and F is the cross-section area) - and "absurd" 
loss of stability of the rod [4]. 

3. P U R E  S H E A R  

For pure shear in the xy plane the variation of the work according to Novozhilov will be equal to 

S*x Oxy l+L"y = ( l+2s  It2 (3.1) ~dA * = Oxy~s O*xy = Sx 1 + Ey' 

In Fig. 1 we show one of the possible positions of an element with respect to the coordinate axes; 
other positions differ only by a rotation as a rigid body. For the version represented u = u(x), ~ = t~(x). 
Then the displacements should be such that Ex = Ey = 0; they are easily obtained: 

v = xsin`/, u = x (cos , / -1 )  (3.2) 

It can be shown that then Ex = Ey = 0, Sx* = Sx. Moreover, for pure shear t ~  = Oyy = 0, C~y = t~y. As 
a result we have 

8dA = t~,,ySexydxdydz (3.3) 

If we write 8d.4 according to the virtual displacement principle, then for pure shear by virtue of the 
fact that t~x~ = 0 we have Xxy = c~y and 

~dA = C~,y~(dxsin,/)dydz (3.4) 

Comparing expressions (3.3) and (3.4) it can be seen that they are identical if we take formulae (1.4) 
for exy; in this case ~ = sin`/for any `/. 

If we take relations (1.7), we have 

sin,/xy = sin-/-  (cos , / -  1 )sin,/= sin)' + sin3,//2 (3.5) 
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In this case the same situation is possible as for compression, when the use of approximation (3.3) leads 
to the occurrence of a false bifurcation point in the solution [4]. 

Hence, the mixed version of the kinematic relations in the quadratic approximation gives the best 
approximation for the elementary states, when the elongation deformation is calculated from formulae 
(1.6) (according to Donnell) while the shear deformation is calculated from formulae (1.4) (according 
to Novozhilov). 

Finally, we must draw attention to the fact that, as can be seen from Fig. 1, the energetically matched 
generalized displacement for x~ will be sinT = sinTxy, rather than )' = )'~,, i.e. the measure of the shear 
deformation is sin), and not T. True, this observation only relates to the form of the representation of 
Hooke's  law for shear and to the problem of processing the corresponding experimental data for con- 
siderable shear deformation. Hence, for a linearly elastic material for large shear deformation, Hooke's  
law must be represented in the form (G is the shear modulus) z = Gsin)', rather than in the form "c = 
G)', as is assumed everywhere. 

Taking this observation into account, relations (1.8) must be written in the form 

sin)'xy = U.y + O;x + W.xW y + ... (3.6) 

Then the version of the combination of relations (1.6) with (3.6) will also not be contradictory. 
For small shears sinTxy -- T~y, and relations (1.6) in combination with (1.8) will then also not be 

contradictory. 

4. R E D U C T I O N  OF T H E  T W O - D I M E N S I O N A L  K I N E M A T I C  
R E L A T I O N S  TO O N E - D I M E N S I O N A L  R E L A T I O N S  F O R  A 

R E C T A N G U L A R  S T R I P  (A R O D )  B A S E D  ON AN I M P R O V E D  
T I M O S H E N K O  M O D E L  

In order to estimate the quality of the kinematic relations derived it is useful to consider the simplest 
examples of their application, related to reducing the two-dimensional non-linear problem of the 
deformation of a strip to one-dimensional equations and their subsequent use to investigate possible 
forms of loss of stability for characteristic forms of loading. 

We will assume that constant forces, having a value per unit length ofpx ,  py andp~y, are applied to 
the edges of a rectangular strip, having dimensions of a and 2h, as shown in Fig. 2. We will use the 
following approximations for the displacements U and V 

U = u ( x )  + y ) ' ( x ) ,  V = o ( x )  + y ~ ( x )  (4.1) 

which are well-known in the theory of single-layer and multilayer shells (the improved Timoshenko model 
taking transverse compression into account). Here u(x)  and v(x) are the displacements of points on 
the x axis of the strip. 

In the two-dimensional problem considered we have for the elongation deformation 

2 = (4.2) E x = e 1 1 + e l f f 2 ,  Ey = e22+e~l12; el l  = U x, el2 V,x, e13 = w~ . . . .  

and the following formula holds for the shear deformation 

sinTl 2 = e12(1 + e22) + e21(1 + ell) (4.3) 

when using the complete kinetic relations (1.4), and the formula 

)'12 = el2 +e21 (4.4) 

when using the incomplete relations (1.6). 
Within the framework of representations (4.1) we have for the quantities e 0 occurring in formulae 

(4.2)-(4.4) 

ell = u'+YT', e22 = q), el2 = ff+Yq~', e21 = )' (4.5) 

When using them for a strip with the thin-walled parameter 2h/a = e ~ 1, by formulae (4.2) we arrive 
at the reduced kinematic relations 
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where 

Ex = E~x + YZ + Y2r '212 -- E~x + YZ, Ey = cp + y2/2 (4.6) 

E~x = U ' +  1)'2/2, X = y' + v'q~' (4.7) 

Assuming that, in view of the relation 2h/a = e ~ 1, the approximation Y12 = )'~2(x) holds, to determine 
the shear deformation we will use the reduced formula 

sinYt 2 = (1 + tp)O' + (1 + u')y (4.8) 

which is obtained by substituting expressions (4.5) into relation (4.3) in the complete quadratic approxi- 
mation, and the formula in the linear approximation 

Yt2 = o' + y (4.9) 

which is obtained using relation (4.4) in the incomplete quadratic approximation. 

5. T H E  O N E - D I M E N S I O N A L  I M P R O V E D  E Q U I L I B R I U M  E Q U A T I O N S  
F O R  A S T R I P  A N D  ITS F O R M  OF LOSS OF S T A B I L I T Y  F O R  

D I F F E R E N T  F O R M S  OF L O A D I N G  

Corresponding to the approximations (4.6) and the approximations 712 = 7~z(x), we will introduce into 
consideration the following forces and moments per unit length 

h h h h 

N x = J o ,dy,  M = J o~yay, N, = I%dy, N,y = J't,,ydy (5.1) 
-h -h -h -h 

reduced to the axial line x, and we will represent the variation of the potential energy of deformation 
of the strip in the form 

a 

8U = I[N,,SE~x + MSZ + NySEy + N,,8(sinT12)ldx 
o 

(5.2) 

and when using approximations (4.1) for the variation of the work of external forces, applied to the 
edges of the strip (Fig. 2), we arrive at the expression 

a 

x ~ a  

8A = (2hp,,Su + 2hp,,y8 o)i., = o + [(2hpyStp + 2hpxySy)dx (5.3) 
0 
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The equilibrium equations and the static boundary conditions at the edges of the strip x = 0 and 
x = a, when using expressions (5.2) and (5.3) can be obtained starting from the variational equation 

8 U - S A  = 0 (5.4) 

Henceforth it will be more convenient to represent them for different degrees of approximation. 

The equations and bifurcations of  their solutions, corresponding to the use of  approximation (4. 9) and 
the Timoshenko model ignoring transverse compression. This model of deformation is the simplest of the 
existing improved models, in accordance with which it is necessary to put 

In addition to relations (5.5) we also put 

oy = N y - 0  (5.5) 

-= 0 (5.6) 

which, within the framework of assumption (5.5) is not fundamental. 
By virtue of assumption (5.5) we can establish the following physical relations 

N x = BIE ~ = Bl(u '+ o'2/2), B t = 2hE 1 (5.7) 

M = D1Z = DIT', D 1 = 2h3El/3 (5.8) 

Nxy = B12TI2 = B 1 2 ( 1 ) ' + T ) ,  BI2 = 2 h G l 2  (5.9) 

where E~ is the modulus of elasticity in the x direction and G12 is the shear modulus in the xy plane. 
With these assumptions, starting from relations (4.7), (4.9) and (5.2)-(5.4) we can obtain the 

equilibrium equations 

l 

N' x = O, Qy = (Nxy + Nxff )' = 0, /14' - Nxy + 2hPxy = 0 (5.10) 

and the boundary conditions at the edges x = 0 and x = a 

N~=2hPx  for 8 u ~ 0 ,  Nxy+Nxl) '=2hpxy for 8 0 4 0 ,  M = 0  for S T # 0  (5.11) 

Since the component equations are only non-linear with respect to one unknown function ~ (the 
bending), it is convenient to use them to consider solely the case of pure axial compression of a strip 
by a force per unit length Px = -P. 

In this case of loading, the boundary conditions Nx can be written in the form 

N x = - 2 h p  when x = 0 a n d x  = a 

by virtue of which the integral of the first equation of (5.8) will be the function 

N x = B~(u'+ ff2/2) = -2hp  (5.12) 

For the second equation of (5.10) to boundary conditions can be formulated in the form 

v = 0 when x = 0 and x = a (5.13) 

if both end sections are fixed in the y direction, or in the form 

v = 0 when x = 0, N x y - 2 h p v '  = 0 when x = a (5.14) 

if the right end section can be freely displaced in the y direction. 
When using (5.9) the second equation of (5.10) can be written in the form 

Nxy = n l E ( 1 ) ' + ] t )  = 2 h p v ' + C  1 (5.15) 
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where C1 is a constant of integration. Hence we obtain 

T = (Cl  + 2 h p t i ) l B l 2 -  f f  (5.16) 

and, substituting expression (5.15) into the last equation of (5.10) and using relation (5.8), we arrive 
at the equation 

DiT"-2hpo '  = C l 

and its first integral. Introducing expression (5.16) into this first integral we obtain the resolvent of the 
problem (C2 is a constant of integration) 

D d  1: _ 2hp~ff, + 2hpl) = - C i x -  C 2 
Bl2J k 

(5.i7) 

The boundary conditions are formulated in the form of (5.3) or (5.4). 
The general solution of Eq. (5.17), in addition to C1 and C2, contains two constants of integration. 

The following boundary conditions can be used to determine them 

T ' (x=0)  = 0, T ' (x=a)  = 0 

which occur in the case of the hinged support of the end sections. 
The problems formulated above and the equations describing them, which are set up with the degree 

of accuracy indicated above, are completely equivalent to the problems and their solutions analysed in 
detail by Vasil'yev [7]. Without dwelling on their investigation, we note that they have two bifurcation 
values of the load 2hp. One of these is given by the formula (2hpE is the well-known Euler critical load) 

2hp~ 
2 h p .  = 1 + 2hprlB12 

This corresponds to a bending form of the loss of stability of the rod and is obtained taking into account 
the transverse shear. (As pointed out by Timoshenko [8, p. 147], the effect of a shearing force on the 
critical force was first indicated by Engesser in 1891.) The following critical load corresponds to the 
second bifurcation point 

s 

p ,  = GI2 

on reaching which a purely shear form of loss of stability occurs. 
Note that a discussion of questions related to this form of loss of stability of rods under axial 

compression can be found in the book [7] and also in other publications ([9], etc.). Nevertheless, it is 
important in principle to emphasise that to investigate a purely shear form of loss of stability under 
conditions of pure unilateral compression of a strip (a rod) it is sufficient to confine oneself to using 
the simplest kinematic Timoshenko model, based on: (1) a consideration of the shear deformation in 
the xy plane within the framework of the corresponding kinematic relation only in the linear 
approximation and (2) neglect of the normal stress and deformations in a direction orthogonal to the 
direction of the compression. 

Note that for other forms of loading, when Nx -- 0, problems formulated starting from relations 
(5.7)-(5.11) are linear, and their solutions have no bifurcation points. 

The equations and bifurcations of their solutions corresponding to the use of approximation (4. 9), taking 
the stress Cry and the deformation Ey into account. In order to simplify the calculations and to carry out 
solely a qualitative analysis of the problems considered above without losing their compactness, we will 
use the relations of Hooke's law in the form 

~x = EIEx ,  ay  = E2Ey, %xy = G12"~'12 (5.18) 

which corresponding to a hypothetical material with zero values of Poisson's ratios. Then, by formulae 
(5.18), (5.1), (4.9), (4.6) and (4.7) we arrive at the elasticity relations 

N x = BIE~x = BI(U'+l ) '2 /2 ) ,  Ny = B2(~0+T2/2), 
Nxy = BI2(lJ+~I ' ) ,  M = DIX = D l ( " [ ' + l ] t p ' )  

B 2 = 2 h E  2 
(5.19) 
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In the case considered, when using approximation (4.9) and relations (4.6) and (4.7) established for 
Ey, starting from relations (5.2) and (5.4) we obtain the equilibrium equations 

t ~ ! t I N x B l (u '+V '2 /2 )  ' = O, Qy = ( N x V ' + N x y + M t p )  = 0 

A'I' - Ny  7 - Nxy + 2hPxy = O, (M1)')' - Ny  + 2hpy  = 0 
(5.20) 

and the boundary conditions when x = 0 and x= a 

N x = 2hPx when 5u~0,  N x l ~ ' + N x y + M t  p' = 2hPxy when 5 0 ~ 0  

M = 0 when 57~0,  Mu'  = 0 when Gtp~0 
(5.21) 

On the basis of the above equations we will consider two forms of loading of the strip. 
Suppose the strip is under conditions of pure shear due to the action of forcespxy = x per unit length, 

shown in Fig. 2. 
To carry out a qualitative analysis we will introduce the standard assumption that the strip, before 

the loss of stability, is under tension, but is not deformed. With this assumption, in the initial unperturbed 
state we will have for the internal forces and moments introduced into consideration 

o o o M o N x = O, g y  = O, gxy --- 2h'[, = 0 (5.22) 

Linearizing Eqs (5.20) in the neighbourhood of the solution (5.22), and retaining the same notation 
used above for the increments of the variables, we obtain linearized equations of the perturbed state 

! ! 

N x = Btu" = 0, B2t p = 0, Nxy = B12(1)'+T)' = 0 

M ' - N x y  = DIy"-BI2(1)'+T) = 0 
(5.23) 

for which the boundary conditions, linearized in the neighbourhood of the solution (5.22), are uniform: 

u ' =  0 for 5u~0,  Nxy = B12(o'+ 7) = 0 for Gv;~0, 7' = 0 for ~i7~0 (5.24) 

Equations (5.23) with boundary conditions (5.24) have only a trivial solution. Consequently, with the 
degree of accuracy assumed in describing the shear deformation by linear relation (4.9), the solutions 
of Eqs (5.20) for pure shear do not enable us to determine purely shear forms of loss of stability. 

Suppose the strip is under conditions of unilateral compression by a force Px = -q in the transverse 
direction. 

In the case considered, we will have the following solution for the initial unperturbed state instead 
of (5.22) 

0 0 = 
N x = O, Ny = - 2 h q ,  N ~  O, M ~ 0 (5.25) 

and the equations of the perturbed state, linearized in its neighbourhood, will take the form 

N'  x = O, n z t  p = O, g'xy : O, M ' - N x y  + 2hq7 = 0 (5.26) 

As in the previous case, the first and second equations of (5.26) have only a trivial solution. 
Using the third equality of (5.26) we can eliminate Nxy from the last equation of (5.26). We obtain 

M" + 2hqT' = 0 

Hence, taking Hooke's law (5.8) into account, we obtain the equation 

114"'+kZM = 0, k 2 = 2hq /D  l (5.27) 

the general solution of which has the form 

M = C 1 sinkx + C2coskx (5.28) 
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x 

Fig. 3 

X 

For homogeneous boundary conditions 

M(x  = 0) = 0, M(x  = a) = 0 (5.29) 

we arrive at the system of equations 

C 2 = 0, Clsinkx = 0 

which has two solutions. 
1. C1 = C2 = 0, to which responds M -- 0 and, as can be seen from the last equation of (5.26), 

N x y -  2hq T = 0 (5.30) 

Hence, taking Hooke's law (5.9) into account, we have 

Bi21/ + ( B 1 2 - 2 h q )  T = 0 (5.31) 

This equation, when 

q ( i )  
_ Bl2 

2h - Gt2 (5.32) 

allows of the solution ~' = 0, T ~ 0, which corresponds to the occurrence of mixed shear forms of 
equilibrium while preserving rectilinearity of the x axis. The corresponding form of loss of stability is 
shown in Fig. 3(a). 

2. C2 = 0, C1 ~ 0, sinka = 0, i.e. ka = n~ (n = 1, 2 . . . .  ). Hence, when n = 1 we obtain the critical 
load 

q~) -- /t2Ol (5.33) 
2ha 2 

To this there corresponds 

M = C Isin ltx, C t ~ 0  (5.34) 
d 

and, by virtue of Hooke's law (5.8). 

CI cos  ~ x  -- a + c3  (5 .35)  

In order to eliminate rotation of the strip as a rigid body, it is sufficient to prevent its middle section 
from rotating, i.e. to put ~x = a/2) = 0. Hence it follows that C3 = 0. We obtain the corresponding 
form of bending v from the third equation of (5.26), taking Hooke's law (5.9) into account, which leads 
to the equation 

( v ' + ? ) '  = 0 

Finally, taking expression (5.35) into account we obtain 

v = Cl a sin~X + C3 + C4 x 
D~Tt a 

(5.36) 
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Fig. 4 

If the ends of the strip axis are secured from vertical displacements, i.e. v(x = 0) = a)(x = a) = 0, 
then C 3 = C4 = 0, and then the shift 712 = a)' + y -  0. Hence, with this form of loss of stability the cross- 
section remains perpendicular to the deformed axis, and the strip behaves as a Bernoulli-Euler beam. 
The corresponding form of loss of stability is shown in Fig. 3(b). 

It should be noted that a similar result can be obtained if we consider the strip as a Bernoulli-Euler 
beam, compressed in the transverse direction by loads q, which do not change its direction for bending 
perturbations. An element dx of such a beam in the perturbed state is shown in Fig. 4. The equilibrium 
equations of the element and the Hooke's law relation take the form 

Q' = 0, M'-Q+2hqo t  = 0, M = D I X  = Dnot' = D1o" (5.37) 

Equation (5.27) immediately follows from these, from which, for the same boundary conditions (5.29), 
we obtain the same critical load (5.33). 

It is obvious that if the load q remains normal to the deformed axis of the strip, i.e. it behaves as a 
normal pressure, the last term in the second equation of (5.37) disappears, and such a loss of stability 
becomes impossible. In exactly the same way, the last terms in the last equation of (5.26) and Eq. (5.27) 
for a strip also vanish. The general solution of the equation M" = 0 will be M = Cl + C2x, and when 
there are no moments on the ends of the strip we obtain that C1 = C2 = 0 and M -  0. In this case only 
a shear form of loss of stability, defined by relations (5.30)-(5.32), becomes possible. 

The equations and bifurcations of  their solutions, corresponding to the use of  the complete non- 
contradictory kinematic relations in the quadratic approximation. In the relations of Hooke's law (5.18) 
we replace the relation for Xxy as follows: 

"~xy = G12sin712 (5.38) 

which leads to the relations of elasticity, which differ from (5.19) by the replacement of the last equality 
by 

N x y  = Bl2[(1 +~p)O'+(1 +u')7 ] (5.39) 

In the case considered, when using relation (4.8) instead of expression (4.9), we obtain equilibrium 
equations of the form 

(Nx+Nxy7)' = 0,  [Nxl) '+Nxy(l +r = 0 

M~-NyT-Nxy(l +u')+ 2hPxy = O, (M1)')'-Ny-Nxyl)'+ 2hpy = 0 
(5.40) 

for which the boundary conditions when x = 0 and x = a take the form 

N x+Nxy7 = 2hpx for 8 u # 0  

NxO'+Nxy(1 +r 9' = 2pxy for B y # 0  (5.41) 

M' = 0 for 8 7 4 0 ,  My' = 0 for 8tp~:0 
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If the initial stress-strain state of the strip is defined by the solution 

= - 2 h p ,  N~y = - 2 h q ,  N o  = 2h'r 1t4 ~ = 0 (5.42) 

Eqs (5.40) and boundary conditions (5.41), linearized in the neighbourhood of this solution, can be 
written in the form 

( N  x + 2hxy)' = 0, Ny + 2hxv '  = 0 (Nxy- 2hpo'  + 2hxg) '  = 0 

- Nxy + 2 h q y -  2hxu' = 0 
(5.43) 

fo rx  = 0 andx  = a 

N~+2hxy  = 0 or ~iu = 0; Nxy-2hpu '+ 2hxtp = 0 or ~iu = 0 
(5.44) 

M' = 0 when 57 = 0 

where, as previously 

N x = Bju' ,  Ny = B2t p, Nxy = BI2(1)'+T), M = Diy' (5.45) 

We will initially consider a strip under pure shear conditions due to the action of forces per unit length 
Pxy = x, applied at the ends (Fig. 2). In this case p = q= 0, and for the first equation of (5.43) we will 
take the boundary conditions in the form Nx + 2hx7 = 0 when x = 0 and x=  a. By virtue of this, Eqs 
(5.43), using relations (5.45), can be represented in the form 

B]u' + 2hxy  = O, B29 + 2hXlY = O, 

Di y" - Bl2( u' + y)  - 2h'cu' = 0 

Bl2( v' + T) + 2 h x 9  = C l 
(5.46) 

From the first two equations of (5.46) we obtain 

u' = S ____S ,. 
-~1 Y, ~ = B21), S = 2hx (5.47) 

Consequently, the last two equations of (5.46) take the form 

Cl , 2 _ _ _  S , $2 
]( = BI 2 Z1)' O l ~ " -  ~2 o + ~1]( ~- Cl; 

S 2 
X = 1 - ~  (5.48) 

B2B]2 

When using the equation of  (5.48) we will write the first integral of  the second equation in the form 

u" + k2v  = b C i x  + C 2 (5.49) 

Here  

k 2 1 -~(BI2+B2BI2~,  b = 1 (5.50) 
= O 1 ~,--X- B 1 ) -D---l 

Substituting the general solution of Eq. (5.49) into the expression for 7, we obtain, after differentiation 
with respect to x, 

y' = zkz (C3s inkx  + C4coskx) (5.51) 

We will subject the solution (5.51) to the last condition of (5.44) when x = 0. We then obtain the 
equation 

)~k2C4 -- 0 (5.52) 
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which can be satisfied in three cases: 
(1) C 4 = 0; 
(2) Z = 0, whence we obtain the positive bifurcation value 

S($1) = ~ or  ,[(1) = ~/E2G12 (5.53) 

and also 

= Ci/Bl2 = const, y ' - -0  (5.54) 

i.e. all the sectionx = const, on changing into the perturbed state, are rotated by an angle that is constant 
along the length of the strip, and which is characteristic for a shear form of loss of stability; in this case 
k = ~ ,  and the displacement v becomes indeterminate, unlike the cases corresponding to the action 
of the forcesp and q; 

(3) k 2 = 0, which, when using the first formula of (5.50), leads to another positive bifurcation value 

S($ 2) = , J (B 1 + B2)BI2 , or X~) = ~/(E, + Ez)GIz (5.55) 

It can be seen that x(,2) > x~). 
We now subject solution (5.51) to the condition M' = 0 when x = a for the case when C 4 = 0. Then 

~k2s inkaC3 = 0 (5.56) 

Hence if follows that c3 ~ 0, only when, unlike the cases when Z = 0 and k 2 = 0, the following condition 
is satisfied 

k 2 = n21~2/a 2, n = 0, 1, 2, ... 

Using the first formula of (5.50), we arrive at a quadratic equation in S 2, whence  we find 

S(~ 3'4) = ( U t - ~ )  , U = [(Bt + B 2 ) B I 2 + B I T E ] ,  V = BIB2B12T E 

2 ~2h2Bl 2 
Te  = -~DI  - 3 n 

a d 

(5.57) 

Hence it follows that 

S ~ ) - 0 ,  S ~ ) =  S~ ) when n = O; S(,3) = 0, S ~ ) =  S~ ) when B 1 - 0  

An analysis of the roots of (5.57) showed that when n ~ 0, S(, 4) is a minimum when n = 1. 
For the purpose of comparing the quantities S~ ) and S(, 4), defined by formulae (5.53) and (5.57) (when 

choosing the minus sign), we set up the relation 

r2 = /~(4)/~:(t)x2 = ~ , ~ 2 _ 1 ]  

where 

2 Bl BI h 7[ 2 
= (1 + k  I +11), T I = -~-klkl2E , k 1 = B2,-- k12 = BI 2 , ~  E = a- 

The table shows values of r for different values of kl, k12 and e; for e = 0.5, generally speaking, not 
corresponding to the case when e ~ 1, the values of r lie between 0.938 and 0.999. It can be seen that 

(4) < (1) m S,  S,  always. For s all values of the stiffness on the transverse shear (B12/B 1 "~ 1) for a strip of 
average thickness (e = 0.1) the values of S(, 0 approach the values of S(, 4) when the parameter kl = B1/B2 
increases. 
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Ill= 10 I 102 [ 103 

g I g 

0.5 O. 1 0.01 0.5 O. 1 0.01 0.5 O. l 0.01 

1 0.938 0.388 0.040 0.993 0.848 O. 127 0.999 0.984 0.388 

10 0.943 0.483 0.054 0.994 0.873 0.171 0.999 0.985 0.484 

Hence, for pure shear, solution (5.51) corresponds to the least bifurcation value x.; it is necessary 
to take Ca = 0 in this solution. In this case we have the following function for o 

V = C3s inkx  + ~22(bCix + C2) (5.58) 

and for 7 and ~ we have the functions 

T = - X C l -  C 3 x k c o s k x ;  ~[' = zk2C3 s inkx  (5.59) 

by which the corresponding form of the loss of stability is described, after determining two of the three 
constants of integration. 

Note that, for a rectangular orthotropic plate, subjected to pure shear, the solution of the problem 
of the shear form of loss of stability was given previously in [5], starting from the linearized equations 
of the plane problem of the theory of elasticity, the basis of which is the use of the complete kinematic 
relation (4.3). The bifurcation value x* for an isotropic plate obtained in it is equal to 

E 
x .  = G = 2 ( 1 ) + v  ' ' ' ' - - ~  

which, for v = 0.3 is 1.6 times less than the value of  x., found from formula (5.53). 
It is easy to show that when a force p acts on the strip, when q=  x = 0, following from problem 

(5.43)-(5.45), the problem is identical with that considered above, based on the most simplified equations, 
and when a force q acts, when p = x = 0, the problem, which follows from problem (5.43)-(5.45), is 
identical with that investigated above based on the partially simplified equations. 

6. A N A L Y S I S  OF T H E  K I N E M A T I C  R E L A T I O N S  IN O R T H O G O N A L  
C U R V I L I N E A R  C O O R D I N A T E S  

We refer to continuum of the undefformed body to an orthogonal system of curvilinear coordinates 
x ~ (a  = 1, 2, 3), in which the Lam6 parameters Ha and the unit vectors la are defined. If the displacement 
vector U of an arbitrary point M(x  c') is represented by the expansion U = Ual~, then in the deformed 
state for the unit vectors l 'a,  and also for the elongation deformation Ea and the shear deformation 

~ ([3 = 1, 2, 3) without introducing any limitations on their values, there are analogies with the formulae 
erived in Section 1 (summation, in accordance with the generally accepted rules, is carried out over 

dummy indices) 

Here 

!* = (Bali + eall)lltlh*, Ea = h* - 1 

sinYal~ = 2f.afjl(h*h~) ( a r  [~); h*  = (1 + 2 e a a )  lrz 
(6.1) 

2Ea~ = ea~ + e~a + ea6e~s = ~ne~n + ~a.e~n + eaxe~n = 

= (~an + ean'~ { , .  efj.'~ Tje . + to,. +  je:. t 

(6.2) 



786 V.N. Paimushin and V. I. Shalashilin 

I /)ul 1 OHl 1 t)Hl 
= + - ~ U 3 

e l l  Hi ~x I HIH 20x 2 u2 + HIH30x 3 

1 Ou2 1 ~Hl 1 ~U3 1 OH1 ) 
= U i ,  el3 = -- 1, 2, 3 

e12 HlOxt  HIH2 Ox 2 HlOxl HIH3 Ox 3 Ul' < 

(6.3) 

The analogues of formulae (1.3) 

E a -- eaa (6.4) 

simplified for the case of small elongation deformation, are generally accepted; following from the first 
equality of (6.1) with an accuracy of 2 + E~ = 2, and from the second equality of (6.1) with an accuracy 
of (1 + 2e~) -i/2 = 1 we obtain the approximate formulae 

~/al~ - 2eal~ ( a  # 13) (6 .5)  

if we take sinTa ~ ~ 7a~ 
We will assume that, at each point of the deformed body, the x a axes are the principal axes of deforma- 

tion. In this system of coordinates 

~/a[~ = 2ea~ = 0 ( a  # [3) 

and only in the case when ea~ = 0 w h e n  e ~ [3. But  in this case, as follows from Eq. (6.2), the following 
expressions hold 

2Eaa = 2eaa + e2aa 

Substitution of these expressions into the second equality of (6.1) leads to the exact formulae 

2 1/2 
Ea = ( l + 2eaa + eaa) - 1  = eaa (6.6) 

which are analogues of formulae (2.3), whereas within the framework of the approximate formulae (6.4) 
we arrive at the result 

2 
E a = eaa = eaa + eaa[2 (6.7) 

In addition to the problems considered previously in [4, 5], we will show below, using the simplest 
example, to what physically incorrect results and conclusions one can be led by using approximations 
(6.4) when solving specific problems. 

7. SOLUTIONS OF THE P R O B L E M  OF THE N E U T R A L  E Q U I L I B R I U M  
OF A C I R C U L A R  RING U N D E R  A U N I F O R M  E X T E R N A L  

P R E S S U R E  HAVING Z E R O  V A R I A B I L I T Y  IN A 
C I R C U M F E R E N T I A L  D I R E C T I O N  

We will consider the solutions of the problem of the neutral equilibrium (forms of loss of stability) of 
a circular ring when acted upon by a uniform external pressure, having zero variability of the parameters 
of the perturbed stress-strain state in a circumferential direction. The forms of loss stability and the 
vibrations of three-layered structures, which have zero variability in a circumferential direction have 
been described and investigated previously in [4, 10, 11]. 

The unperturbed (subcritical) stress-strain state. Suppose a circular ring of orthotropic material, having 
a thickness 2h and a radius of the middle surface R, is in a plane stress-strain state under the action 
of a uniform external pressurep. If the middle surface of the ring is referred to a circumferential (angular) 
coordinate 0 and a radial coordinate z(-h _< z _< h), connected with the dimensionless coordinate x by 
the relation p = 1 + z/R,  its unperturbed (axisymmetrical) stress-strain state will be described by the 
equilibrium equation 



Deformation theory in the quadratic approximation 787 

o o 0 
d f f  zz ~  - ffoo 

~ - -  = 0 ( 7 . 1 )  
d p  p 

Here and henceforth all the parameters of the unperturbed stress-strain state are denoted by a zero 
superscript. 

If the material of the ring is linearly elastic, with elastic parameters E2, E3, G23, v2, v3, where 
/~2v2 = /~3v3, the circumferential and radial normal stresses in Eq. (7.1) are connected with the 
corresponding radial displacement u2 by the relations of the generalized Hooke's law 

, 0 0 ~ 0 0 
0 E3 fduz Uz'~ 0 E2fUz duz'~ .E2 , E~' = ~:2 (7.2) 

(1  -- V 2 7 3 )  ( 1  --  V 2 V 3 )  

It should be noted that in the case considered the 0 and z axes are the principal axes of deformation 
and the following equalities are strictly satisfied 

in which 

: d..~ : " - 'd"~  : . - ' u %  

Hence, the elasticity relations (7.2) and equilibrium equation (7.1), in which the stresses are referred 
to the corresponding areas in the undeformed state of the ring, are also exact. 

After substituting expressions (7.2) into the equilibrium equation (7.1) we arrive at an equation 
in uz. 

2 0 0 0 
d u z duz -- ~21Jz ~2 E2 
dP 2 +-p-~ p2 = 0; = E3---" 

the solution of which with the boundary conditions 

has the form 

0 o 
o u = - p  when z = h, ~zz = 0 when z = -h 

o = p R  _~ S- i 
u~ =A+p s+A_p 4, A+ AE~'~_+v3) v~ 

A p~- 1p78- 1 -8-1 ~-1, 
= - P i  P2 Pl = 1 - h  o, P2 = l + h  o, h o = h lR  

(7.3) 

By formulae (7.2) ad (7.3) we have the following expressions for the stresses 

ISzz p i p A L t . p l / -  , o o o  = t. J +  -  tTJJ (7.4) 

which, for a ring of isotropic material, by virtue of the equalities 

v 2 = v 3  = v  , ~72 =~73 = E ,  ~5= 1 

take the form 

o o 2 
Ozz 0oo PP2 

2-----""5 = 2 2 -  (7.5) 
P - P l  P +Pl 4hop 2 
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In the other hypothetically possible case, when 8 ~ 1 (/~2 "~ J~3), as fi ---) 0 we obtain from relations 
(7.4) 

0 
czz 0 PPE/P (7.6) 

ln(p/pl)  = ace - ln(P2/pl ) 

For a thing ring, when h0 ~ 1, from both relations (7.5) and (7.6) we obtain the same approximate 
formulae 

0 
Czz o p ; Z (7.7) 

( zo+ho) -~176176  Zo= 

from which we see that O~ = c~ when Zo = ho. 

Forms of neutral equilibrium of a ring with zero variability of  the parameters of  the perturbed stress-strain 
state. If the deformation of the ring in the unperturbed state is assumed to be small, we can make the 
standard assumption that, in this state, it is stressed but not deformed, and to describe its neutral equili- 
brium with parameters of the perturbed stress-strain state, having zero variability in the circumferential 
direction (i.e. b/b0 = 0), using the results obtained by Novozhilov, Guz' and others (see, for example, 
[1]), we can set up the following system of homogeneous differential equations 

dp(P6ze ) + Ce~ : 0, 
P P 

~ 

d ~ p___~(pazz ) _ co_.Op = 0 (7.8) 

in which Ozz, oz0, o0z, o00 are the perturbed components of the stresses in the 12 and 13 axes  of the 
undeformed state of the ring, connected with the perturbed components of the stresses ~zz, COz = Czo, 
o00 in the deformed axis 15 and 1~ and stresses o~ c ~ by the relations 

0 ~ 0 
~zz = Czz + CzzEzz, Coo = Coo + ceeEee (7.9) 

~ 0 ~ 

Czo = CzO + Czz(Ezo/2- to), Coz = COz + C~ + co) (7.10) 

where 

Cizz = E~(Ezz + v3E0o), COO = E~(Eoo + vzEzz), COz = Gx3Eoz (7.11) 

Ezo = -~-~, E= = -~-~, Eoo = - ~ ,  Eoz = R~,dp -ff , o = 2R~,dp + (7.12) 

By relations (7.9)-(7.12), Eqs (7.8) reduces to two unconnected ordinary differential equations 

0 d2uo G23 + c~176 <c23+Czz)~-~p 2+ ~,-d--~ ~)=0 (7.13) 

0 d2uz E* o ( e~  + ~ + Coo dUz e *  + c~ 
6zz) dp 2 + p dp p2 uz = 0 (7.14) 

Equations (7.13) and (7.14) for z = _h  must respectively satisfy the following conditions 

Oze(P = Pl) : 0, Oze(P : P2) = 0 (7.15) 

ou(P  = P,) = O, ~  = P2) = 0 (7.16) 
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The equations compiled, with boundary conditions (7.15) and (7.16), can be investigated with different 
degrees of approximation. However, the principal conclusions can also be formulated when they are 
investigated for a thin ring using the simplest shell model 

u z=w, u 0 = v + p u  (7.17) 

which has been called a Timoshenko-type model, ignoring transverse compression. Here w and o are 
the radial and circumferential displacements of points on the axis of the ring. 

Application of the first relation of (7.17) to Eq. (7.14) leads to the equality 

P2 

f 0 w (E~' +ooo)dP = 0 

Pl 

which, using the second formula of (7.7) for a thin ring, gives w(E~2 - p) = 0. Hence follows the 
bifurcation value of the external pressure p* = E~, similar to that obtained previously in [4, 5] and 
related to the assumption of the approximation E0 --- eo0 in the initial geometrically non-linear problem, 
formulated using general considerations of the form 

Ea = eaa, ~laf~ = 2eaf~ ( a  ;~ ~) 

If, instead of uz -- w we use the more accurate approximations and satisfy conditions (7.16), we can 
establish from Eq. (7.14) several bifurcation values of the external pressure by using the approximations 

Eo = Eoo, Ez = ezz 

when constructing the initial geometrically non-linear equations. 
Applying the second relation of (7.17) to Eq. (7.13) and the second formula of (7.7), we obtain 

Pi ( G23 p 
Pl 

Hence, by virtue of the fact that o r 0, we obtain the bifurcation value of the external pressure 

p .  = 2h0G23 (7.18) 

which, in the light of the results obtained previously in [4, 10], is the critical value of the external pressure, 
on reaching which the ring loses stability with respect to a purely shear form. This form of loss of stability 
of the ring occurs physically when o~0 reaches the values G23, if a purely flexural form of loss of stability 
does not occur earlier for lower values ofp.  

8. N O N - C O N T R A D I C T O R Y  K I N E M A T I C  R E L A T I O N S  IN T H E  
Q U A D R A T I C  A P P R O X I M A T I O N  FOR THE CASE OF S M A L L  

E L O N G A T I O N  D E F O R M A T I O N  AND A V E R A G E  S H E A R  
D E F O R M A T I O N  

In the light of the results described for the case of small elongation deformation (E~ -- e) in orthogonal 
curvilinear coordinates the following relations are more correct compared with the relations used in 
the literature 

2 
E I = ell + (e~2 + el3)/2 . . . .  (8.1) 

which are an analogue of relations (1.6) and, unlike (6.7), enables one, in the limit, to transfer to formulae 
(6.6). Then, to determine the shear deformation it is necessary to use the relations 

sin~/12 --- 2EI2 = el2 (1 + e22 ) + e21 ( 1 + e l l  ) + e13e23 . . . .  (8.2) 

which are analogues of relations (1.4). 



790 V.N. Paimushin and V. I. Shalashilin 

It should be noted that relations (8.1) follow from (6.2) and (6.4) when and only when, in addition 
to satisfying the estimates Ea = e (i.e. when one can use approximation (6.4)), the following estimates 
are satisfied 

e a a  --- E, eal  ~ = , , ~  (0~ * 13) ( 8 . 3 )  

In other words, the elongation deformation can only be small when the quantities eaa are small and 
are "average" (i.e. of the order of x/-e) quantities ea~ (a r [3). When h* -- 1 the geometrical meaning of 
the latter can easily be established from the first equality of (6.1), for example el2 = cos(l~, l~), etc. 
Since the shear deformation is defined in terms of the quantities ea~ (or r and, when the estimates 
(8.3) are satisfied in accordance with (8.2), they are "average", relations (8.2), within the framework 
of the approximations (5.1) employed, allow of further simplifications of the form 

~r = sinY12 -- 2s -- e l2  + e21 + e13e23, "-- (8.4) 

Finally, for small elongation deformation and average shear deformation the kinematic relations in 
the quadratic approximation (8.1) and (8.4) are correct and are justified with the necessary degree of 
completeness. The geometrically non-linear equations of the theory of elasticity, formulated using them, 
enable us to investigate only physically realizable forms of loss of stability which, in particular, where 
demonstrated in [4]. 

For the case of the deformed state considered, expressions (6.1) take the form 

) 
1,2,3 !* = ! 1 + el212 + ej313, < 

Using them and starting from the representations 

~a = Oal~l ~' = 8a~l ~ 

one can establish the following relations between the components of the stresses ~a~ and ~a~ 

~11 m ~ 1 1 + 0 1 2 e 2 1  +013e31 , ~12 ---- t f f l l e 1 2 + ~ 1 2 + ~ 1 3 e 3 2  
) 

~13 = ffllel3 + ff12e23 + ffl3,  1, 2,  3 
( 

(8.5) 

which are correct and do not lead to "absurd" force boundary conditions. We can also show this by 
considering the problem investigated in Section 7, from the positions described. In fact, when using 
the kinematic relations (8.1) and (8.4) as well as relations (8.5) to formulate the initial geometrically 
non-linear equations, we must introduce the following formulae into the equations of neutral equilibrium 
(7.8) instead of (7.9) 

(~zz = Ozz, ~00 = o00 (8.6) 

in which ~zz and ~00 are defined, as before, from formulae (7.11). As a result the "strange" boundary 
conditions (7.16) become clear: 

~zz(P = Pl) = 0, Ozz( p = P2) = 0 (8.7) 

and, instead of Eq. (7.14), we arrive at the equation 

,::Uz dUz/ E* 
_- 0 

which, in view of boundary conditions (8.7), only have a trivial solution uz --- 0. 

9. C O N C L U S I O N S  

1. If a uniaxial stress of longitudinal compression is formed in the components of structures, the form 
of loss of stability which occurs in them is either purely flexural or purely shear. To determine the 
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bifurcation values of the acting load in this case for elongation deformation in the direction of the 
compression it is necessary to use a kinematic relation in the form (1.6). However, for deformation in 
directions orthogonal to the compression, and for shear, it is permissible to use linear kinematic relations. 

2. For a uniform transverse compression, the behaviour of the load turns out to be important. If it 
remains normal to the deformed axis, bifurcation is only possible in shear form. If the load maintains 
its direction, then, in addition to a shear form of bifurcation a flexural form of loss of stability is possible, 
identical in form with the Euler form, for which there is no shear. 

3. If a stress state, close to pure shear, is formed in the structural component,  then to investigate 
the bifurcation values of the load, shear deformation is necessary to describe the non-linear kinematic 
relations in the complete quadratic version of the form (1.5). 

4. For thin-walled structural components in the form of rods, for thin-walled structural components 
in the form of rods, plates and shells, made of  composite materials, acceptable results in determining 
the form of loss of stability and the critical loads can be expected from using the simplest improved 
models, known in the literature and constructed taking into account the transverse shear. At the same 
time, in the light of the results obtained, further investigation of the problems related to improving the 
non-linear theory of multi-layer structural components (in particular, three-layer components), the 
structure of which is formed from alternating thin and rigid layers and layers of filler of lower rigidity, 
is primarily required. For three-layer shells with fillers, which belong to the class of transversely weak 
structures [12], these non-contradictory versions of the theory, which are interesting in view of the 
possibility of investigating shear forms of loss of stability when compression stresses are formed in the 
filler in a transverse direction, were constructed previously in [4]. 

This research was supported financially by the Russian Foundation for Basic Research (03-01-0053a 
and 03-01-00071). 
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